授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
技術英語 Ⅱ	平成27年度	松尾 江津子	専2	前期	学修単位 1	必

比較的平易な英文から名文と呼ばれる完成度の高い英文までを網羅したテキストを使い、良質の英文を精読することで読解力の向上、文法事項・語彙・慣用表現などの知識の強化をねらいとする。また、英文を理解し楽しむと同時に、その文章を生み出した歴史や文化、社会について学び、教養を身に付けることを目的とする。具体的には、物語、自伝、短編小説、エッセイという4つのジャンルからの読み物で構成されているテキストを用い、おもに Helen Keller の自伝 *The Story of my Life* の抜粋と、Robert Lynd のエッセイ("Laziness: Written in Winter")を取り上げ、註や文法事項、語彙、熟語などを確認しながら内容を考察する。科学・技術を研究する本校の学生にも英語圏の文化やレトリック、思考方法を学び、世界に羽ばたいてほしい。

「授業の内容]

全ての週の内容は、学習・教育目標 (C)<英語>および JABEE 基準 1(1) (a)、(f)の項目に相当する.

第1週 Introduction

Kwaidan by Lafcadio Hearn

第2週 Kwaidan by Lafcadio Hearn

第3週 Helen Keller, The Story of my Life

第4週 Helen Keller, The Story of my Life

第5週 Helen Keller, The Story of my Life

第6週 Helen Keller, The Story of my Life

第7週 Helen Keller, The Story of my Life

第8週 中間試験

第9週 Robert Lynd, "Laziness: Written in Winter"

第10週 Robert Lynd, "Laziness: Written in Winter"

第11週 Robert Lynd, "Laziness: Written in Winter"

第12週 Robert Lynd, "Laziness: Written in Winter"

第13週 Robert Lynd, "Laziness: Written in Winter"

第14週 Philip K. Dick, The Cookie Lady

第15週 Philip K. Dick, The Cookie Lady

[この授業で習得する「知識・能力」]

- 1. 各章で取り上げられる英文の概要を理解できる.
- 2. 各章で取り上げられる英文を要約できる.
- 3. 各章の内容に関する英語の問いに対して、適切な表現で答えることができる.
- 4. 各章に出てくる単語・熟語の意味および慣用表現が理解できる.
- 5. 各章に含まれる語法, 英語表現のいくつかを応用して適切な 英語表現ができる.
- 6. 各章の議論を自分の問題としてとらえ,自分の意見を持ち, 表明することができる.

[この授業の達成目標]

英文の内容と論理展開を理解し、その中で用いられている英語 表現や型を習得し、それらを用いて、自分の意見を表明すること ができる.

[達成目標の評価方法と基準]

上記の「知識・能力」 $1\sim6$ の習得の度合を中間試験,期末試験,小テスト,課題により評価する.評価における「知識・能力」の重みの目安は $1\sim5$ を 90%, 6 を 10% とする.試験問題や課題のレベルは,百点法により 60 点以上の得点を取得した場合に目標を達成したことが確認できるように設定する.

[注意事項] 規定の単位制に基づき、自己学習を前提として授業を進め、自己学習の成果を評価するために課題提出を求めたり、小テストを行なうので、日頃から自己学習に励むこと.

[あらかじめ要求される基礎知識の範囲] TOEIC375 点程度, 「COCET3300」修了程度の語彙知識

[自己学習] 予習としてはテキストの英文を辞書を引いて読んでくること. 授業で保証する学習時間と,予習・復習(中間試験,定期試験のための学習も含む)及びレポート作成に必要な標準的な学習時間の総計が45時間に相当する学習内容である.

教科書:行方昭夫ほか編注、『Reading English Step by Step 英文読解ステップ by ステップ』(鶴見書店)

参考書: 特に指定はなし. 自分に必要なものを自分で考えて使えばよい.

[学業成績の評価方法および評価基準]

中間,期末の2回の試験の結果を70%,小テストの結果を30%として評価する.ただし,試験で60点に達していない者には再試験を課すこともあり,再試験の成績が本試験の成績を上回った場合には,60点を上限として本試験の成績を再試験の成績で置き換えるものとする.

[単位修得要件]

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
総合英語	平成 27 年度	Mike Lawson	専 2	後期	学修単位 1	必

The objective of this class is to build on the previous year's course in order to further develop students' English-language presentation skill by focusing on group cooperation, script/PowerPoint file coordination, PowerPoint slide transition, the use of electronic mail as a tool for revision and development, and advanced English-language presentation techniques, such as complete script memorization and speaker transition.

[授業の内容]

The following content conforms to the learning and educational goals: (A) <Perspective> [JABEE Standard 1(1) (a)], and (C) <English> [JABEE Standard 1(1) f].

Week:

- 1 Assign students to small groups. Introduce course/Assign Main Presentation topic selection. Discuss the theoretical and practical use of email exchange as a tool for revision and development.
- 2 Discuss group cooperation techniques for outline creation. Assign Outline draft 1. Groups submit 1st draft outlines to the teacher via email attachment. Teacher notes areas for improvement.
- 3 Discuss how $1^{\rm st}$ draft outlines can be improved. Groups submit $2^{\rm nd}$ draft outlines to the teacher via email attachment. Teacher notes areas for improvement
- 4: Class time is spent discussing how the 2nd draft outlines can be improved. Groups submit 3rd draft outlines to the teacher via email attachment. Teacher notes areas for improvement.
- 5: Class time is spent discussing how the 3rd draft outlines can be improved. Groups submit 4th draft outlines to the teacher via email attachment. Teacher notes areas for improvement.
- 6: Class time is spent discussing how the 4th draft outlines can be improved. Groups submit final draft outlines to the teacher via email attachment. Teacher makes final improvements on the outlines.

Week:

- 7: Discuss group cooperation techniques for PowerPoint creation, script/PowerPoint file coordination, and slide transition. Groups submit 1st draft PowerPoints to the teacher via email attachment. Teacher notes areas for improvement.
- 8: Class time is spent discussing how the 1st draft PowerPoints can be improved. Groups submit 2nd draft PowerPoints to the teacher via email attachment. Teacher areas for improvement.
- 9: Class time is spent discussing how the 2nd draft PowerPoints can be improved. Wednesday: Groups submit 3rd draft PowerPoints to the teacher via email attachment. Teacher notes areas for improvement.
- 10: Class time is spent discussing how the 3rd draft PowerPoints can be improved. Wednesday: Groups submit fourth draft PowerPoints to the teacher via email attachment. Teacher notes areas for improvement.
- 11: Class time is spent discussing how the 4th draft PowerPoints can be improved. Wednesday: Groups submit final draft PowerPoints to the teacher via email attachment. Teacher makes final improvements on the PowerPoints.
- 12-14: <u>Discuss advanced presentation techniques such as complete script memorization and speaker transition</u>. Groups practice their presentations using a computer and projector in the classroom while the teacher teaches presentation skills based on weaknesses observed during these practice sessions.
- 15: Students make their presentations in the audio/visual room and are judged by native-English speakers, guest judges, and select members of the English department.

[この授業で習得する「知識・能力」]

- 1. To learn group cooperation through an analysis of group selection techniques and an in-class lecture regarding the importance of teamwork.
- To acquire script/PowerPoint file coordination and PowerPoint slide transition skill through lectures and practical application as they create effective presentations.
- 3. To learn advanced script and PowerPoint revision techniques through lectures and electronic mail exchange with the teacher.
- 4. To develop advanced practical presentation techniques by being required to memorize scripts and by focusing on physical aesthetics, such as smooth speaker transition.
- 5. To further improve their ability to give an effective English-language oral presentation with the use of PowerPoints.

[この授業の達成目標]

The objective of this course is to increase the students' ability to give an advanced-level oral presentation in English.

「達成目標の評価方法と基準]

Students' English oral presentation ability will be evaluated through one "Main" English oral presentation to be given on the 15th week of class in the Audio/Visual room and judged/evaluated by senior-level staff members to be selected by the teacher. Students will have attained the goal of this course provided that they have earned 60% of the total points possible which includes the 1 "Main" presentation.

[注意事項]

You may contact me at: lawson@genl.suzuka-ct.ac.jp.

[あらかじめ要求される基礎知識の範囲]

A good command of basic English syntax; a practical level of reading and listening comprehension, and some ability to converse in English achieved through the first six years at Suzuka Kosen.

[自己学習] Students are required to give 1 "Main Presentation". The total time necessary for students to acquire an understanding of the course is 45 hours, including classroom time and study/presentation time outside of the classroom. This is an advanced class which will be intense. Students are expected to attend regularly and to not be late. We will need to cover a lot of information each week, so students should be awake and ready to work. Students will be given weekly assignments, such as, topic selection, weekly outline and PowerPoint updates. Failure to meet the deadlines for these assignments will result in a 10% reduction of the final grade—for each infraction. Students are required to obtain an email account which can send and receive Word and PowerPoint documents.

教科書: Material as distributed in class. A Japanese-English dictionary and an English grammar guide.

[学業成績の評価方法及び評価基準]

Students' English oral presentation ability will be evaluated through 1 oral examination. Grades will be based on the following percentages: Oral Presentation, 100%. Students may have their final scores reduced for poor participation in classes.

[単位修得要件]

Students must obtain at least 60% of the total possible points in order to receive 1 credit.

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
国際関係論	平成27年度	三瀬貴弘	専 2	後期	学修単位 2	必

[授業のねらい]・・・・・国際社会においてまさに今,生じている様々な問題について,政治的,経済的,文化的,歴史的背景を含めて理解する.それらを,よりよく理解するために必要となる,国際関係論の基礎的な理論,考え方を習得する.さらに,理論と現実の相互作用に注目しながら,「国際公共財」の概念を用いて,ポスト冷戦期における日米関係について考察する.

[授業の内容]すべての内容は,学習・教育目標(A) < 視野 > と,JABEE 基準 1 (1)(a)に対応する. 「理論講義」の内容.「注意事項」参照.

第1週 オリエンテーション

< 国際政治経済学の登場 >

第2週 国際関係論と国際政治経済学の関係

第3週 国際関係論の誕生

第4週 国際関係論の誕生

第5週 リアリズムとリベラリズム

第6週 リアリズムとリベラリズム

第7週 リアリズムの隆盛と行き詰まり

第8週 リアリズムの隆盛と行き詰まり

<国際政治経済学とは何か>

第9週 学術的政経架橋

第 10 週 学術的政経架橋

第11週 覇権安定論

第12週 覇権安定論

第13週 相互依存論

第14週 相互依存論

第15週 国際政治学に基づくポスト冷戦秩序の構築

「映像資料」は、「国民国家のゆらぎ」「国家間のパワーバランスの変化」などをテーマに、最新のトピックを講義予定.

[この授業で習得する「知識・能力」]

国際関係論における基礎的な理論に関する知識.

国際社会において今現在,何が起こっているか,その背景も含めた知識.(領土をめぐる摩擦,シェール革命,イスラム国,アラブの春,パレスチナ問題,文化財返還問題,地球温暖化,ボランティア事情,ロボット兵器など,最新のトピックを予定)

で理解した国際社会の現実を, で習得した理論を用いて解釈し,目前に展開する複雑な国際社会・国際関係について,自分なりの見方を提示する能力を身につけること.

[この授業の達成目標]

「国際政治経済学(International Political Economy; IPE)」について,(1)国際政治経済学の出自,ならびに,(2)国際政治経済学の特徴,暗黙に前提とする思考,現実の秩序形成,現在の日米関係に対して与えている影響を理解すること.

「国際社会でまさに今,何が問題になっているか」について, その背景も含めて,広くかつ深い視点から理解すること.

[達成目標の評価方法と基準]

レポート 100%. (出席率が 2/3 未満の場合,単位は認めない) レポートの課題は,左記の[この授業の達成目標]を問うもの. レポートの評価基準は, 内容や事実を正確に理解しているか, 論理的な文章が書けているかで評価する.レポートの分量ならびに価値判断については評価対象としない.

[注意事項]毎回の講義を以下の4部で構成する.それぞれに学生に求められる役割は異なる.出席した学生が,毎回「何か」を得られるような講義にしたい.また,講義を通じて「興味を持ったこと」について自主的に学習することを強く期待する.

15 分間「頭の体操」・・・・国際関係論に関する,面白くてためになるクイズをする.地理,歴史,文化に関する楽しい問題を予定.

50 分間「理論講義」・・・・授業計画に沿って,穴埋め形式のレジュメを配布,それに沿い講義する.(達成目標)

20 分間「映像資料」・・・・国際社会で現在起こっている問題を,映像資料を用いて講義する.(達成目標)

5分間「感想記入」・・・・講義に対する感想,要望や質問などを記入し提出する.

[あらかじめ要求される基礎知識の範囲] なし.

[自己学習]詳細なレジュメを毎回配布するので,講義中に理解できなかった場合は,家で読み直して復習すること.また講義に関連する(読みやすい)文献を,毎回10冊程度紹介し,希望者にその場で貸し出す「講義図書館」を実施する.これを活用するなどして, 講義で感じた「何かしらの引っかかり」を契機として,関心ある問題について自主的に勉強するサイクルを確立して欲しい.

〔参考書〕

坂井昭夫『国際政治経済学とは何か』青木書店,1998年.その他,講義時に数冊を紹介するが,いずれも購入は義務付けない.

[学業成績の評価方法および評価基準] レポート 100%で評価する.ただし学生の希望に応じて柔軟に対応する.

[単位修得要件] 提出したレポートの評価が60点以上であること.

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
経営学	平成27年度	横森 万	專2	後期	2	選

- 1. 企業側の視点から企業実態を紹介し、学生の皆さんの企業理解を深めることを目指す.
- 2. 企業活動の実態(生産活動,研究開発活動他)と、その中で活動する企業人の生き方を講義し、学生諸君に専門教育の有用性、原理原則に基づく科学的思考法の重要性を認識させる.
- 3. 企業の求める人材像、企業内での昇進・進路形成(Career Pass)等、種々の事項を企業側の視点から講義し、学生諸君に企業への適合性を高める.

[授業の内容] すべての内容は、学習・教育目標 (A) の〈視野〉に対応する.

第1週 企業人としてのスタート―リクルート活動全般-

第2週 企業から見た新入社員選択基準

第3週 企業分類・企業選択の着眼点

第4週 技術系社員の企業内進路の多様性, Career Pass

第5週 昇進・Career Development

第6週 企業人としての心構えと行動基準

第7週 リクルート活動各論,他

第8週 中間試験

第9週 企業活動の理解

第10週 日本の製造業の特色

第11週 自動車産業の変遷

第12週 企業活動で直面する課題:安全,防災

第13週 企業活動で直面する課題:仕事の進め方他

第14週 インターネット検索情報を用いたグループ討議

第15週 インターネット検索情報を用いたプレゼンテーション

「この授業で習得する「知識・能力」]

・就業力の育成,強化

・科学的思考法・論理性及び人間力の重要性の認識

・グループ討議、プレゼンテーションを通じた自己の再認識

[この授業の達成目標]

①企業活動の実態を理解し、就職活動への取り組み姿勢を育成する.

②就職後の企業への適応力を向上させる.

③科学的思考法及び人間力の重要性を認識する.

④自己の強みと弱みを理解する.

[達成目標の評価方法と基準]

目標とする知識・能力の修得の度合いを、定期試験、講義ごとに 提出されるアンケートにより評価する。定期試験の平均点を 6 0%、アンケート評価を 4 0%として評価する.

[注意事項] 本授業では、インターネット検索により得られる情報を用いて、全員参加型のグループ討議とプレゼンテーションを行う. 受講者は、インターネット検索可能な検索媒体(携帯電話・PC等)を持参してください.

[自己学習] [あらかじめ要求される基礎知識の範囲] 特になし.

[自己学習] 講義後の復習を重視する.

参考書 特になし、講義資料は講師が準備する.

[学業成績の評価方法および評価基準)]

目標とする知識・能力の修得の度合いを,中間試験,定期試験,講義ごとに提出されるアンケートにより評価する.

中間試験、定期試験の平均点を60%、アンケート評価を40%として評価する。但し、中間試験で60点に達していないものには再試験を課し、再試験の成績が中間試験の成績を上回った場合には、60点を上限として中間試験の成績を再試験で置き換える。

[単位取得要件]

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
言語表現学特論	平成27年度	西岡 將美	専 2	後期	学修単位 2	選

本授業では、「第三者に説明するための仕事の文章を書くための原則」を常に意識した文章作成を目指す、「言語表現」の基本である「読む、書く、聞く、話す」学習の演習を通じて、相手の気持ちを尊重し自分の気持ちを的確に伝えることを身につける学習を行う、 最終的に、自らが取り組む課題に関する問題点・成果等を論理的に記述し、伝達、討論できる能力を身につけることを目標とする。

[授業の内容]

すべての内容は,学習・教育目標(A)の<視野><意欲>, および(C)<発表>とJABEE 基準1(1)(a),(f),(g)に対応する. 第1週 授業目標及び内容の説明,およびレポート作成上の注意

第2週 言語表現技術の技法を身につけるため基礎学習

第3週 言語表現技術の技法を身につけるため基礎学習

第4週 「第三者に説明するための仕事の文章を書くための原則 総論(「書く」ことの基本) 各論「曖昧接続の『が』 について」,「常体」と「敬体」の違い

第5週 各論「公用文作成の要領」,「カタカナ外来語と引用のルールについて」 まとめ「書くときの教訓9ヵ条」

第6週 言語表現技術の技法を身につけるため基礎学習

第7週 言語表現技術の技法を身につけるため基礎学習

第8週 中間試験

第9週 中間試験についての反省、留意事項

エンジニア・コミュニケーションのあり方

(言葉に「まごころ」を込めるコミュニケーション手法)

第10週 エンジニア・コミュニケーションのあり方

(感謝・謝罪の気持ちを表すコミュニケーション手法)

第11週 エンジニア・コミュニケーションのあり方

(相手にはたらきかけるときの心得とテクニック)

第12週 プレゼンテーション技術演習

第13週 プレゼンテーション技術演習

第14週 プレゼンテーション技術演習のまとめ

(課題に対してのプレゼンテーションに取り組む)

3.コミュニケーションに関する基本的な考え方を学ぶ.また、

状況に応じたコミュニケーション力を有し、自分の気持ちを

4. プレゼンテーション能力を身につける. 具体的には、複数の

人を対象に、短時間で、論理的・体系的に情報を伝えることの

第15週 授業まとめと反省 授業アンケートの実施

[この授業で習得する「知識・能力」]

- 1.「第三者に説明するための仕事の文章を書くための原則」について,総論,各論,および基本的事項について学ぶ.また, 状況に応じた仕事文の書き方を修得している.
- 2. 「言語表現技術の技法を身につける」では,「漢字の読み書き」「訓読み」「ことわざ」「同音異義語」「慣用表現」「故事成語」「四字熟語」「敬語表現」,「修辞法全般」など,基本語彙力,表現力を身につける.

できるスキルを身につける. 5.1~5を習得することにより,仕事の文章作成と状況にあわ

的確に伝える能力を身につける.

せた有効なコミュニケーションができる

[この授業の達成目標] [達成目標の評価方法と基準]

将来社会人としての「仕事の文章」を正確に作成することができるとともに,他者理解の重要性を理解し,様々な場面で必要となるであろうコミュニケーション能力を身につける.

上記「知識・能力」1~5に関して中間,期末試験で評価する. 達成度評価における各「知識・能力」の重みの目安は概ね均等. 合計の60%の得点で,目標達成を確認できるレベルの試験を課す

[注意事項]学習に対する積極的な姿勢と,自ら課題を探究する意欲を持つ.また,授業を受講する際の具体的な注意事項を守る.

[あらかじめ要求される基礎知識の範囲]

本教科は、「言語表現学・・」をはじめとする高専国語のすべての学習内容、特に「言語」についての知識が基礎となる教科である

[自己学習]授業における学習時間と試験勉強を含めた予習及び復習,そして課題準備に必要な標準的学習時間の総計が,90時間に相当する学習内容である.言語表現学習の総まとめとして,「漢字検定2級」「文章検定2級」の合格を目指そう.

教科書:教員の自主作成教材および授業時に指示した「参考書」を使用する.

参考書:林 治郎・岡田三津子編著「改訂版言語表現技術ハンドブック」(晃洋書房),木下是雄著「理科系の作文技術」(中公新書)

[学業成績の評価方法および評価基準]

後期中間・学年末の試験の平均点を 70%, 課題 (レポート) 10%, プレゼンテーションの結果を 20%として評価する. ただし、後期中間・学年末試験ともに再試験を行わない.

[単位修得要件]後期中間・学年末の2回の試験、課題(レポート),小テストにより,学業成績で60点以上を修得すること.

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
センサ工学	平成27年度	横山春喜・西村 一寛	専 2	後期	学修単位 2	必

産業界における生産現場はもとより、大学等の研究機関において物理情報の検出、測定、解析を行う場合も、センサ関連技術を知っておくことは重要である。この科目では、センサの歴史と役割、センサの種類、基本構成、動作原理を学ぶとともに、センサを有効に活用するための回路技術、センシング応用技術を学ぶ。

[授業の内容]

第 1 週の内容は学習・教育目標(A) < 視野 > , JABEE 基準 1 (1)(a)(b)に相当し,第2週~第16週の内容は学習・教育目標(B)

<専門>および JABEE 基準 1 (1)(d)(2)a)に相当する.

第1週 人間からロボットへ,センサの定義

第2週 光センサの種類,ホトダイオード,

第3週 ホトトランジスタ, ССD

第4週 CdSセル,光電管,焦電形赤外線センサ

第5週 電磁誘導,センサと指示計器の違い,磁電効果,ホールセンサ

第6週 磁気抵抗効果,磁気インピーダンス効果

第 7週 磁気センサの応用例

第 8週 中間テスト

第 9週 圧力センサ

第10週 測温抵抗体,サーミスタ,感温フェライト

第11週 IC温度センサ,赤外線センサ,熱電対

第12週 位置センサ,超音波センサ

第13週 振動センサ1

第14週 振動センサ2

第15週 湿度センサ,ガスセンサ

[この授業で習得する「知識・能力」]

- 1.人間とロボットの対応,センサの定義を説明できる.
- 2.光センサについて説明できる.
- 3.磁気センサについて説明できる.

- 4.圧力センサ、温度センサについて説明できる.
- 5.位置センサ,超音波センサについて説明できる.
- 6.振動センサ,湿度センサ,ガスセンサについて説明できる.

[この授業の達成目標]

人間とロボットの対応からセンサの位置づけを理解し、センサの定義,種類,基本構成,動作原理を学ぶとともに、センサを有効に活用するための回路技術を修得することから、センサの応用技術を理解できる.

[達成目標の評価方法と基準]

センサに関する「知識・能力」 $1 \sim 6$ の確認を中間試験,期末試験,課題レポートにより評価する. $1 \sim 6$ に関する重みは同じである.試験問題,課題レポートのレベルは,百点法により 6 0 点以上の得点を取得した場合に目標を達成したことが確認できるように設定する.

[注意事項] 規定の単位制に基づき,自己学習を前提として授業を進め,自己学習の成果を評価するためにレポートの提出を求めるので,日頃から自己学習に励むこと.

[あらかじめ要求される基礎知識の範囲]

電気電子材料,半導体デバイス,電子回路および信号処理に関する基礎知識があることが望ましい.

[自己学習] 授業で保証する学習時間と,予習・復習(中間試験,定期試験のための学習も含む)およびレポート作成に必要な標準的な学習時間の総計が,90時間に相当する学習内容である.

教科書:「電子計測と制御」 田所 嘉昭 著(森北出版) 参考書:「センサのしくみ」 谷腰 欣司 著(電波新聞社)

[学業成績の評価方法および評価基準] 後期中間,学年末の2回の試験の平均点で評価する.再試験を実施した場合には,60点を上限として評価する.課題レポートを実施した場合には,試験の結果を85%,課題レポート結果を15%で評価する.

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
物性工学	平成27年度	江崎 尚和	専 2	前期	学修単位 2	必

この授業では,物質を構成している原子や結晶体の構造,原子間の結合様式,ならびに原子の集合体としての物質の機能(物性)の発現をこれらと密接に関連するいくつかの代表的な物性について講義する.

[授業の内容]

学習教育目標(B) < 基礎 > JABEE 基準 1(1)(d)(2)a)に対応

第1週 物質を構成する原子の電子核構造について

第2週 物質の諸性質とその周期性

第3週 物質の構造(主に結晶構造)

第4週 結晶の対称性と結晶面・方向の表記

第5週 結晶による回折現象:

第6週 回折 X 線の強度と構造因子

第7週 巨視的および原子論的観点からみた物質の弾性

第8週 中間試験

第9週 原子論的観点から見た物質の弾性について

第10週 原子論的観点から見た物質の熱的性質:熱膨張

第 11 週 ポテンシャル・エネルギー曲線と熱膨張係数

第12週 ポテンシャル関数を用いた熱膨張係数の見積もり

第13週 原子論的観点から見た物質の熱的性質:熱振動

第14週 物質内における原子振動の大きさの見積もり

第15週 物質内における原子振動の大きさの見積もり

[この授業で習得すべき知識・能力]

学習教育目標(B)<専門>JABEE 基準(d)(2) a)に対応

- 1.原子の電子核構造と、それを決める4つの量子数の意味を理解している。
- 2.物質の性質と構成原子の電子核構造との関連を理解している.
- 3.基本的な結晶構造を理解している。
- 4. 立方晶系の結晶についてミラー指数による面および方位の表記ができる
- 4. 結晶による放射線の回折現象を理解している.
- 5 . 結晶構造因子の意味を理解し、実際の結晶による回折現象の 説明に利用できる。
- 6.原子間に作用するポテンシャル関数やその曲線と物質の種々の性質との関連を理解している.
- 7.ポテンシャル関数を利用して原子振動の大きさを理解することができる。

[この授業の達成目標]

物質を構成する元素の構造と性質や,それらの集合体としての 結晶が示す回折現象などを理解するとともに,原子論的な観点か ら弾性や熱的性質などの物性の起源を理解し説明できる。

[達成目標の評価方法と基準]

[この授業で習得する「知識・能力」]1~8の習得の度合を中間試験,期末試験により評価する.試験の重みは同じである.試験問題のレベルは,100点法により60点以上の得点を取得した場合に目標を達成したことが確認できるように設定する.

[注意事項] 専門共通科目であるため,いろいろな素養を持った学生が授業を受けることを考慮して,材料の物性について工学的観点から幅広く,わかりやすく講義する予定である.ただし,開講時間数が少ないため物性のすべてをここで取り扱うことは不可能である.上記以外の諸物性に関して興味のある人は各自参考書等で勉強すること.

[あらかじめ要求される基礎知識の範囲]

本科ならびに専攻科ですでに習得した,応用物理に関する基礎知識.本教科は,構造設計学,表面工学,複合材料工学,非破壊検査工学,エネルギー移送論,マイクロプロセス工学,流体力学特論,組織制御学,相変換工学等の学習が基礎となる教科である.

[自己学習] 授業で保証する学習時間と,予習・復習(中間試験,定期試験のための学習も含む)及びレポート作成に必要な標準的な学習時間の総計が,90時間に相当する学習内容である.

教科書:ノート講義(プリント資料)

参考書:「技術者のための固体物性」 飯田修一訳 (丸善)

「物性工学の基礎」 田中哲郎著 (朝倉書店) 「材料の物性」兵藤申一他著(朝倉書店)

[学業成績の評価方法および評価基準]

求められたすべてのレポートの提出をしていなければならない . 学業成績の評価は中間・期末の 2 回の試験の平均点で評価する . ただし , 中間試験で 60 点に達しなかったものについては再試験を行い (無断欠席の者を除く) , 60 点を上限として再試験の成績で置き換えるものとする .

[単位修得要件]

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
生命工学	平成27年度	田村 陽次郎	專2	後期	学修単位2	選

生物を分子で出来た機械として捉える時、その知識は物作りのための重要な源泉になる. 講義では運動生理学、分子生物学の用語に慣れると共に、生命の作る機械の中で、神経回路および筋収縮の機構に関しての理解を深めていく.

[授業の内容]

第1週 - Structure of skeletal muscle

第2週 - Structure of actin and myosin filament

第 3 週 - Effect of calcium ions on actin filament

第4週 - Length-tension relationship of skeletal muscle

第5週 - Organization of the nervous system

第6週 - Structure of an alpha motor neuron

第7週 - Action potential in nerve fibers

第 8 週 - Neuromuscular transmission and excitaion-contraction coupling

第9週 - Types of muscle contraction

第10週 - Force-velocity characteristic of skeletal muscle

第11週 - Motor unit

第12週 - Effect of muscle fiber type on tension and fatigue

第13週 - Central and peripheral fatigue

第14週 - Recruitment patterns of motor units

第15週 - Stretch reflex

上記の授業は全て学習,教育目標(B) <基礎>および,JABEE 基準1(1)の(c)に対応する.

[この授業で習得する「知識・能力」]

- 1.神経系,筋等において生理学,分子生物学で使われる用語を理解している.
- 2.神経系,筋等に現われる生命分子機械の構造を理解している.
- 3.神経系,筋等に現われる生命分子機械の働きを理解している
- 4. 生命分子機械の構造と機能の関係を理解している.

[この授業の達成目標]

運動生理学,分子生物学の用語に慣れると共に,生命の作る機械の中で,特に,神経回路および筋収縮の機構に関して理解している.

[達成目標の評価方法と基準]

上記の「知識・能力」1~4の習得の度合を学年末試験,レポートにより評価する.評価における「知識・能力」の重みの目安は1~4を各25%とする.試験問題とレポート課題のレベルは,百点法により60点以上の得点を取得した場合に目標を達成したことが確認できるように設定する.

[注意事項]自己学習を前提とした規定の単位制に基づき授業を進め,課題提出を求める。米国の大学の学部学生向けに作られた運動 生理学のテキストをもとにした輪講を行う.

[あらかじめ要求される基礎知識の範囲]熱力学の基礎を理解していること.学年相当の英語力があること.

[自己学習]授業で保証する学習時間と,予習・復習(定期試験のための学習も含む)及びレポート作成に必要な標準的な学習時間の総計が,90時間に相当する学習内容である.

教科書:プリント配布

参考書:「Physiology coloring workbook」K.Axen et.al., (The Princeton review),「Illustrated principles of exercise physiology」K.Alex & K.V.Alex (Prentice Hall)

[学業成績の評価方法および評価基準]自己学習を前提として適宜求める課題の提出をしていなければならない.学年末(定期試験)を50%,課題を50%として評価し,60%以上の得点を得たものを合格とする。再試験は行わない.

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
生産設計工学	平成27年度	横山,飯塚,澤田	専 2	後期	学修単位 2	選

企業等における生産現場において必要となる各種システムの設計手法 ,生産に関する技術 ,安全に関する事項等を学び ,ものづくり における基本的考え方と設計の実際を身に付けると同時に,エンジニアリングデザイン能力の向上を図る.

[授業の内容]

全ての週の内容は,学習・教育目標(B) < 専門 > および JABEE 基準 | 第5週 通信システムの標準化(飯塚) 1(1)(d)(2)a)に対応する.

第1週 現代における工業的生産活動とエンジニアリングデザイ ン(大津)

第2週 事例に学ぶエンジニアリングデザインの基本とその要諦 (1)-課題設定力・課題解決力ほか-(大津)

第3週 事例に学ぶエンジニアリングデザインの基本とその要諦 | (2) 技術者としての視野・コミュニケーション能力 ほか (大津)

第4週 技術者の喜びと責任 - 技術開発と技術経営(MOT)に ついて(大津)

第6週 移動体通信の周波数割り当て(飯塚)

第7週 無線通信機器の法規制(飯塚)

第8週 サービス開発の概要(飯塚)

第9週 インターネットその1(飯塚)

第10週 インターネットその2(飯塚)

第11週 電波伝搬と回線設計(飯塚)

第12週 経営分析_1(貸借対照表,損益計算書)(澤田)

第13週 経営分析_2(経営指標)(澤田)

第14週 化学プロセス合理化_1(2成分系蒸留・物質収支)(澤田)

第15週 化学プロセス合理化_2(コスト計算と投資基準)(澤田)

[この授業で習得する「知識・能力」]

- 1.現代における「ものづくり」=工業的生産活動とは何か、そ れに携わる技術者に必要な素養や能力は何かが理解できる.
- 2. 実践的事例研究を通して, エンジニアリングデザインの基本 とその要諦を理解し,適切な価値判断,技術評価等を行うこ とができる.
- 3.技術開発とそれに続く技術管理の基本と勘所が理解できる.
- 4.移動体通信に関連する標準化、周波数割り当てが理解できる
- 5. 通信システムにおけるサービス開発とは何かが理解できる.
- 6. インターネットで用いられる技術が理解できる.
- 7. 電波伝搬の概要が理解できる.
- 8.経営分析により経営指標を求められる.
- 9. コスト計算と操作条件の最適化ができる.

[この授業の達成目標]

ものづくりにおける基本的考え方であるエンジニアリングデザ インの要諦を理解し,生産活動における安全の考え方を身に付け, 移動体通信システムの設計や化学プラント設計に応用することが できる.

[達成目標の評価方法と基準]

上記の「知識・能力」1~10の習得の度合いを,4回のレポー トまたは小テストにより評価する.達成度評価における各「知識・ 能力」の重みは概ね均等とする.レポート課題,小テストの問題 のレベルは百点法により60点以上の得点を習得した場合に目標 を達成したことが確認できるように設定する.

[注意事項] 規定の単位制に基づき,自己学習を前提として授業を進め,自己学習の成果を評価するためにレポート提出を求めるの で,日頃から自己学習に励むこと.対象が工学全分野にわたるため,積極的な取り組みを期待する.

[あらかじめ要求される基礎知識の範囲]

[自己学習] 授業で保証する学習時間と,予習・復習(小テストのための学習も含む)及びレポート作成に必要な標準的な学習時 間の総計が,90時間に相当する学習内容である.

教科書:必要に応じ資料を配布する.

参考書:

[学業成績の評価方法および評価基準]

4回のレポートまたは小テストの平均点を100%として評価する.

[単位修得要件]

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
実践工業数学	平成27年度	授業担当教員	専1・2	前期	学修単位 1	選

[授業のねらい] eラーニングに係る遠隔教育により,工学の各専門に用いられる数学を,応用面から理解しながら学ぶ.

[授業の内容](学習目標 B<専門>,JABEE(d)(2)a)に対応)

ロボット工学編 - ベクトルと行列

主担当:鈴鹿高専(機械工学科)白井達也

数学部分:群馬高専 碓氷久, 元鈴鹿高専 安富真一

(1) 多関節ロボットの順運動学

座標変換,位置と姿勢,作業座標変換と関節角度空間,水平多関節ロボットの変換行列による表現

(2) 多関節ロボットの逆運動学

一般化逆行列(疑似变换逆行列),軌道計画

電気・電子工学編 - 微分方程式,ベクトル,確率,関数

主担当:鈴鹿高専(電気電子工学科)柴垣寛治

数学部分:岐阜高専 岡田章三,鈴鹿高専 堀江太郎

(1) 放電現象の物理

放電プラズマの応用,核融合プラズマ

(2) 気体論

気体の電気的性質,気体放電とプラズマ,放電の開始と持続,パッシェンの法則

情報工学編 - ベクトルと行列

主担当:鈴鹿高専(電子情報工学科)箕浦弘人

数学部分:元鈴鹿高専 安富真一

1) 三次元グラフィックス

三次元空間でのアフィン変換と同時座標系,透視投影と透 視変換行列,任意の平面への投影,座標変換の効率化

(2) 三次元位置計測

三次元座標の算出,最小二乗法,三次元位置計測と連立方程式の幾何学的解釈,多視点による精度の向上,変換行列の 決定

機械工学編 - 積分,行列

主担当:鈴鹿高専(機械工学科)南部紘一郎

数学部分:鈴鹿高専 堀江太郎

(1) 有限要素解析に使用する要素

一次,二次三角形要素,一次,二次四辺形要素

(2)応力解析における計算モデル

仮想仕事の原理,三角形要素の剛性マトリックス

[この授業で習得する「知識・能力」]

- 1. 講義のポイントを理解し,レポートに要点がわかりやすくまとめることができる.
- 2. 疑問点を明確にし、レポートの中で、考察、資料調査がなさ

れている.また,必要に応じてメール等により質疑応答ができる.

3. レポートにおいて,講義で紹介された内容,関連事項,応用 について,理解している.

[この授業の達成目標]

ベクトル,行列,微分方程式,確率,関数,積分が,機械工学,電気・電子工学,情報工学,通信工学的な観点から理解でき,それらを使うことができる.

[達成目標の評価方法と基準]

上記の「知識・能力」1~3の習得の度合をレポート及びコンテンツへのアクセス状況により評価する.評価における「知識・能力」の重みの目安はレポート評価に関しては,上記各項目すべてにわたって出される中間課題と,期末に出される特別課題に対して,均等で全間正解を80%とし,レポート課題のレベルは,百点法により60点以上の得点を取得した場合に目標を達成したことが確認できるように設定する.またアクセス状況の評価は最大20%とする.

[注意事項] この科目は「単位互換を伴う実践型講義配信事業に係る単位互換協定」における単位互換科目として実施する.自己学習を前提とした規定の単位制に基づき授業を進めるので,日頃の勉強に力を入れること.

[あらかじめ要求される基礎知識の範囲] 各学科の学科卒業程度の習得

[自己学習] 授業で保証する学習時間と,予習・復習及びレポート作成に必要な標準的な学習時間の総計が,45時間に相当する学習内容である.

教科書:実践工業数学 第3版(受講者に配布) 参考書:特になし.

[学業成績の評価方法および評価基準] 各授業項目について中間及び期末の課題を全て正しく解答した提出レポート(80%)及びアクセス状況(20%)を基準として、学業成績を総合的に評価する、評価基準は、次のとおり、 優(100~80点)、良(79~65点)、可(64~60点)、不可(59点以下)

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
実践工業数学	平成 27 年度	授業担当教員	専1・2	前期	学修単位 1	選

[授業のねらい] e ラーニングに係る遠隔教育により,工学の各専門に用いられる数学を,応用面から理解しながら学ぶ.

「授業の内容]

(学習・教育目標 B<専門>, JABEE(d)(2)a)に対応)

生物工学編 - 確率・統計

主担当:鈴鹿高専(生物応用化学科)山口雅裕

数学部分:鈴鹿高専 堀江太郎

(1) 生物統計 1 パラメトリックな検定 検定の考え方,検定の誤りと危険率,データの対応,t 検定,Welchの検定,Z検定,

(2) 生物統計 2 ノンパラメトリックな検定 U 検定(Man-Whitney 検定), 2 検 (カイ二乗) 検定,生物学的有意性と統計学的有意性の違い,公式の選定

物理化学編 - 微分・積分 , 微分方程式 , 三角関数

主担当:鈴鹿高専(材料工学科)和田憲幸

数学部分:鈴鹿高専 堀江太郎

(1) 熱力学の基礎方程式とその応用

熱力学第1法則,熱力学第2法則,物質の熱容量,マックスウエルの関係式,エントロピーの温度依存性,化学ポテンシャル,反応と平衡常数

(2) シュレーディンガー方程式とその解(並進運動(1次元,3次元))

シュレーディンガー方程式,規格化,自由粒子のエネルギー,井戸型ポテンシャルと並進運動

(3) シュレーディンガー方程式とその解(調和振動,回転運動)(三角関数とそれらの公式,微分・積分,微分方程式)

調和振動,2次元回転運動(古典論),2次元回転運動 (量子論),3次元回転運動(量子論)

材料工学編 - 微分方程式と関数

主担当:鈴鹿高専(材料工学科)兼松秀行

数学部分:鈴鹿高専 堀江太郎

(1) フィックの第一法則

金属中の拡散現象,偏微分とフィックの第1法則の解法

(2)フィックの第二法則

フィックの第2法則と定常状態での解法,フィックの第2法則と非定常状態での解法,拡散距離が比較的短い場合の解法,有限な長さを持つ軽についての解法(変数分離)

[この授業で習得する「知識・能力」]

- 1. 講義のポイントを理解し,レポートに要点がわかりやすくまとめることができる.
- 2. 疑問点を明確にし,レポートにおいて,考察,資料調査がなさ

れている.また,必要に応じてメール等により質疑応答ができる.

3. レポートにおいて,講義で紹介された内容,関連事項,応用について理解している.

「この授業の達成目標]

微分方程式,確率,関数,統計,微分,積分,三角関数が,生物工学,物理化学,材料工学的な観点から理解でき,それらを使うことができる.

[達成目標の評価方法と基準]

上記の「知識・能力」1~3の習得の度合をレポートおよびコンテンツへのアクセス状況により評価する.「知識・能力」1~3の重みは均等で,課題と期末に出される特別課題を80%とし,レポート課題のレベルは,百点法により60点以上の得点を取得した場合に目標を達成したことが確認できるように設定する.またアクセス状況の評価を最大20%とする.

[注意事項] この科目は「単位互換を伴う実践型講義配信事業に係る単位互換協定」における単位互換科目として実施する.自己学習を前提とした規定の単位制に基づき授業を進めるので,日頃の勉強に力を入れること.

[あらかじめ要求される基礎知識の範囲] 各学科の学科卒業程度の知識と能力を必要とする。

[自己学習] 授業で保証する学習時間と,予習・復習及びレポート作成に必要な標準的な学習時間の総計が,45 時間に相当する学習内容である.

教科書:実践工業数学(受講者に配布) 参考書:特になし.

[学業成績の評価方法および評価基準] 各授業項目について中間および期末の課題を全て正しく解答した提出レポート(80%)およびアクセス状況(20%)を基準として,学業成績を総合的に評価する. なお,優が $100 \sim 80$ 点,良が $79 \sim 65$ 点,可が $64 \sim 60$ 点,不可が 59 点以下である.

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
電子機械工学輪講	平成27年度	専攻科担当教員	専 2	前期	学修単位 2	必

特別研究に関連した国内外の論文などを講読或いは輪読して基本的事項を理解し,最近の研究動向を知るとともに,その内容をまとめて紹介する能力を培う.さらに,質疑応答などにより内容を発展させ,特別研究を進める上での基礎を培う.

[授業の内容]

全ての内容は,学習・教育目標(B)<専門><展開>,(C)<英語><発表>[JABEE 基準1(1)(d)(2)a),(f),(h]に対応する.

特別研究を発展させる上で必要な基本的な文献,および最近の 国内外の論文資料を講読或いは輪読し,研究動向を知るとともに, 内容の解説,紹介および質疑応答を通して,技術者として不可欠 な文献の理解力と発表能力を培う.また,最新の文献を入手する ために必要な,デ-タベ-ス等を利用する文献検索の方法を修得 する.

特別研究のテーマに関連したもので,以下の分野から選択する.

- 1. <機械工学> 機械力学,材料力学,計算力学,有限要素法, 計算機援用工学,弾性学,熱力学,熱工学,流体工学,気液混 相流,液体の微粒化,精密工学,機械工作法,精密加工,制御 工学,応力ひずみ解析,真空工学等
- 2. <電気・電子工学> 高電圧工学,送配電工学,電子工学, 電子回路,電子物性,放電物理,固体電子工学,集積回路工学, 情報科学,知能情報学,ニューラルネットワーク,パターン認 識,画像処理工学,制御工学,電子線機器学等
- 3. <電子情報工学> 電子工学,半導体デバイス,情報電子回路,電子計測,環境電磁工学,放電応用,超真空工学,電磁エネルギー工学,情報制御システム,バイオロボティックス,情報工学,通信伝送工学,自然言語処理,バーチャルリアリティ等

[この授業で習得する「知識・能力」]

- 1. 特別研究に関する国内外(海外のものについては特に英文論文)の論文の講読或いは輪読ができる.
- 2. 論文の検索方法が修得でき,関連する先行研究について論文の調査ができる.
- 講読或いは輪読した論文について,内容をまとめることができ,指導教員に内容を明確に説明することができる.

「この授業の達成目標]

論文の検索方法を修得して,特別研究に関する国内外(海外のものについては特に英文論文)の論文の講読或いは輪読し,関連する先行研究について論文の調査を行って,その内容を指導教員に報告できる.

[達成目標の評価方法と基準]

上記の「知識・能力」1~3の習得度を輪読およびそれらに関するレポートの内容により評価する.1~3に関する重みは同じである.輪講とレポートのレベルは,合計点の60%の点数を取得した場合に目標を達成したことが確認できるように設定する.

[注意事項]

論文の選定には特別研究の指導教員と十分に相談すること、また、周辺分野の基本的な事項にも十分な関心を払うこと、

「あらかじめ要求される基礎知識の範囲]

それぞれの特別研究に関連する基礎知識および英語の能力

[自己学習] 授業で保証する学習時間と,予習・復習及びレポートを記述するのに必要な標準的な学習時間の総計が,90時間に相当する学習内容である.

教科書:指導教員がそれぞれ指示した論文,テキストなど

参考書:

「学業成績の評価方法および評価基準 1

各自に課せられた輪読およびそれらに関するレポートの結果により学業成績を評価する.

「単位修得要件]

評価結果が60点以上であること.

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
電子機械工学実験	平成27年度	専攻科担当教員	専 2	前期	学修単位 2	必

専攻科特別研究と,また,学位授与申請のための学修成果レポート作成の準備として,配属された機械,電気電子,電子情報工学分野の研究室において,これまでの研究をさらに進展させるとともに,成果をまとめるための技術と知識を養う.

[授業の内容]

全ての週の内容は,学習・教育目標(A)<意欲>(B)<基礎><専門><展開>[JABEE 基準 1(1)(d)(2)b)c)d),(e),(g),(h)]に対応する.

機械,電気電子,電子情報工学分野の配属された研究室において,指導教員の下で,特別研究テーマに関係した実験,プログラミング,シミュレーション,測定などをさらに進展させ,技術者としての研究開発能力を培う.また,共同作業により,コミュニケーション能力を身につけるとともに,データの整理,報告書作成,プレゼンテーションなどを通して,技術者として自主的に仕事を進めるために必要な能力を養う.

実験は特別研究のテーマに関連したもので,以下の分野から選択する.

- 1. <機械工学> 機械力学,材料力学,計算力学,有限要素法,計算機援用工学,弾性学,熱力学,熱工学,流体工学,気液混相流,液体の微粒化,精密工学,機械工作法,精密加工,制御工学,応力ひずみ解析,真空工学等
- 2. 〈電気電子工学〉 高電圧工学,送配電工学,電子工学,電子回路,電子物性,放電物理,固体電子工学,集積回路工学,情報科学,知能情報学,ニューラルネットワーク,パターン認識,画像処理工学等
- 3. <電子情報工学> 電子工学,半導体デバイス,情報電子回路,電子計測,環境電磁工学,放電応用,超真空工学,電磁エネルギー工学,情報制御システム,バイオロボティックス,情報工学,通信伝送工学,自然言語処理,バーチャルリアリティ等

[この授業で習得する「知識・能力」]

- 1. 先行研究について継続的学修を進めることができる.
- 2. 実験装置の設計,測定器具の自作,組み立て,プログラミング,シミュレーション,測定準備の具体的作業を進めることができる.
- 3. 行った基本的な実験等について,目的,結果,考察をまとめ レポートにすることができる.
- 4. 上記報告書に基づいて,指導教員に成果の内容を明確に説明することができる.
- 5. 今後の研究方針について展望を述べることができる.

[この授業の達成目標]

専門分野の実験技術の体験を通して専門的な実験技術を修得し,先行研究について調査・学修を踏まえて,実施した実験等について,目的・結果・考察をまとめレポートにすることができる.

[達成目標の評価方法と基準]

上記の「知識・能力」1~5の習得の度合をレポートと実験操作・作業により評価する.レポート等に求めるレベルは,百点法により60点以上の得点を取得した場合に目標を達成したことが確認できるように設定する.

[注意事項] 実験の計画,実施に当たっては,必ず指導教員に報告し,その指導に従うこと.器具,装置の使用に当たっては,指導教員から指示された注意事項を守ること.

[あらかじめ要求される基礎知識の範囲]

実験テーマに関する基礎的事項についての知見,あるいはレポート等による報告書作成に関する基礎的知識

教科書:

参考書:

[学業成績の評価方法および評価基準]

各自に課せられた実験操作・作業およびレポートにより学業成績を評価する.

[単位修得要件]

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必·選
特別研究	平成27年度	電子機械工学専攻 特別研究指導教員	専 2	通年	学修単位7	必

研究の遂行を通して,機械工学,電気電子工学や電子情報工学に関する専門知識と実験技術を総合的に応用する能力,研究を進める上での具体的な課題を設定する能力,継続的・自律的に学習する能力,創造力,プレゼンテーション能力,論理的な文章表現力,英語による基本的なコミュニケーション能力を育成し,解決すべき課題に対して創造性を発揮し,解決法をデザインできる技術者を養成する.

[授業の内容]

すべての内容は,学習・教育目標(A)<意欲>,(B)<展開>,(C)<発表>,<英語>,JABEE 基準1(1)(d)(2)b)c)d),(e),(f),(g),(h)に対応する.

学生各自が研究テーマを持ち,指導教員の指導の下に研究を行う. テーマの分野は次の通りである.

1. <機械工学>:材料力学,機械材料学,複合材料工学,材料評価学,材料強度学,計算力学,有限要素法,計算機援用工学,弾性学,表面改質,破壊力学,熱力学,熱工学,流体工学,気液混相流,液体の微粒化,機械力学,精密工学,機械工作法,精密加工,制御工学,ロボット工学,バイオメカニクス,応力ひずみ解析等

- 2. <電気電子工学>:高電圧工学,送配電工学,電子工学,電子回路,電子物性,放電物理,固体電子工学,集積回路工学,情報科学,知能情報学,ニューラルネットワーク,パターン認識,画像処理工学,制御工学,電子線機器学,電気化学等
- 3. 〈電子情報工学〉:電子工学、半導体デバイス、電子計測、磁気工学、環境電磁工学、高周波回路、生体工学、制御システム、情報工学、無線通信工学、無線ネットワーク、通信伝送工学、通信符号理論、自然言語処理、人工知能、バーチャルリアリィティ等
 - ・後期期末に特別研究論文を提出するとともに,最終発表を行う.

[この授業で習得する「知識・能力」]

- 1. 研究を進める上で解決すべき具体的な課題を設定し,課題遂行のために自発的に学習することができる.
- 2. 研究上の問題点を把握し、その解決の方策を考えることができ
- 3. 研究のゴールを意識し、計画的に研究を進めることができる.
- 4. 研究の過程で自らの創意・工夫を発揮することができる.
- 5. 最終発表において,理解しやすく工夫した発表をすることができ,的確な討論をすることができる.
- 6. 最終発表において,英語による概要説明ができる.
- 7. 特別研究論文を論理的に記述することができる。
- 8. 特別研究論文の英文要旨を適切に記述することができる.

[この授業の達成目標]

特別研究 のテーマに関する基本的事項を理解し,研究のプロセスを通して高度な専門知識と実験技術ならびに継続的・自律的に学習できる能力,問題点を明確化しそれを解決する能力,創造性を発揮し計画的に仕事ができる能力,論理的に意思伝達・討論・記述する能力,英語による基本的なコミュニケーション能力を身に付けている.

[達成目標の評価方法と基準]

上記の「知識・能力」1~8の習得の度合いを中間発表,最終発表,特別研究論文の内容により評価する.1~8に関する重みは特別研究成績評価表に記載したとおりである.発表と論文のレベルは,合計点の60%の点数を取得した場合に目標を達成したことが確認できるように設定する.

[注意事項] 特別研究 は学科で学んだ卒業研究および特別研究 に続いて行われるものであり,基本的には2年間或いは学科を含む3年間で1つのテーマに取り組むことになる.長期間に亘るのでしっかりとした計画の下に自主的に研究を遂行する.

[あらかじめ要求される基礎知識の範囲] 研究テーマに関する周辺の基礎的事項についての知見,或いはレポート等による報告書作成に関する基礎的知識.

教科書: 各指導教員に委ねる. 参考書: 各指導教員に委ねる.

[学業成績の評価方法および評価基準]

「専攻科特別研究の成績評価基準」に定められた配点にしたがって,主査・副査の2名が特別研究論文(70%),最終発表(30%)により100点満点で成績を評価する.

[単位修得要件]

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
電気理論特論	平成27年度	西村高志	2	前期	学修単位 2	選

[授業のねらい] 電気理論(電磁気学と電気回路)は非常に重要な基礎科目であり、最先端の技術を身につけるための必修の科目である。この授業の目的は、電気理論を応用し使いこなせる能力を身につけることである。このために、電気理論の基本を確認した後、実際にこれらの理論を応用して開発された装置の事例を紹介する。特に固体表面解析の強力なツールであるSEM、FIB、SPM(走査型プローブ顕微鏡)を中心に紹介する。これらの装置を電気理論に基づいて理解し使えるようにしたい。

[授業の内容] すべての内容は,学習・教育目標B<専門>および JABEE 基準1(1)(d)(2)a)に対応する.第2週~第9週で電気理論のSEMとFIBへの応用,第10週~第14週でSPMへの応用を学習する.

第1週 イントロダクション,基礎事項の確認

第2週 静電磁界中の荷電粒子の運動

第3週 電磁界レンズ,偏向装置,収差補正装置,BLK装置

第4週 高電圧工学(放電現象,高電圧電源)

第5週 加速管,電子検出器

第6週 荷電粒子の放出,荷電粒子と固体表面の相互作用

第7週 電子銃, イオン銃

第 8週 中間試験

第 9週 中間試験問題の解説

第10週 オペアンプ,フィルター回路

第11週 トンネル顕微鏡(STM)の微小電流の測定回路,走査回路

第12週 圧電素子,水晶振動子,プローブの微動機構

第13週 フィードバック回路, PLL回路,振動工学の基礎

第14週 原子間力顕微鏡(AFM)のプローブ加振機構

第15週 その他の固体表面解析装置

[この授業で習得する「知識・能力」

1. 電磁気学と電気回路の基本を理解し、それらを技術開発へ応用できる能力

2. 固体表面解析装置を電気理論に基づき理解し、その性能と限界を判断できる能力

3. 固体表面解析に最適な装置を選択でき、データの大まかな解釈ができる.

[この授業の達成目標]

電磁気学と電気回路の基本を,具体的問題へ応用することができる.

[達成目標の評価方法と基準]

上記の「知識・能力」を網羅した問題を中間試験および期末試験で出題し,目標の達成度を評価する.合計点の60%の得点で,目標の達成を確認できるレベルの試験を課す.

[注意事項] 実際の技術開発では対象をモデル化・定式化し、定量的な検討をする、今回の講義では電気理論を固体表面解析装置へ応用した事例を示す、講義を通して電気理論の応用の仕方を学んで欲しい。

[あらかじめ要求される基礎知識の範囲] 本科の物理と数学に関する基礎知識

[自己学習] 授業で保証する学習時間と,予習・復習(中間試験,期末試験のための学習も含む)及びレポート作成に必要な標準的な学習時間の総計が,90時間に相当する学習内容である.

教科書: ノート講義 必要に応じてプリントを配布する.

参考書:日本電子顕微鏡学会編「走査電子顕微鏡の基礎と応用」,

日本表面科学会編「ナノテクノロジーのための走査プローブ顕微鏡」 など

[学業成績の評価方法および評価基準] 中間試験・期末試験の2回の試験の平均点で評価する.中間試験においては再試験を実施する場合もある.その場合,点数が中間試験の点数を上回った場合には,60点を上限として中間試験の成績を再試験の成績で置き換える.期末試験の再試験は行わない.レポートなど課題を課した場合には,10%を上限に評価に算入することもある.

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
データ処理システム	平成27年度	青山俊弘	専2	前期	学修単位 2	選

「授業のねらい]

科学技術のあらゆる分野において必要不可欠の基礎技術となったディジタル信号処理の基礎理論の習得を目的としている. 信号処理としてディジタルフィルタリングと離散フーリエ変換を中心に取り上げる.原理を数式として理解するだけでなく, MATLAB によるプログラミングを通して物理的意味を視覚的にも理解する.

「授業の内容]

すべての内容は、学習・教育目標(B)<専門>および JABEE 基準 1(1)(d)(1)に対応する.

- 第1週 序論:ディジタル信号処理とその目的, MATLAB 使用説明
- 第2週 離散時間信号と離散時間フーリエ変換
- 第3週 離散フーリエ変換(DFT)
- 第4週 離散フーリエ変換とスペクトル解析
- 第5週 高速フーリエ変換 (FFT)
- 第6週 離散時間システムとディジタルフィルタの基礎1 (時間 領域表現)
- 第7週 離散時間システムとディジタルフィルタの基礎2 (周波 数領域表現)
- 第8週 中間試験

第9週 z変換

- 第10週 ディジタルフィルタの解析
- 第11週 周波数選択性ディジタルフィルタおよび設計仕様
- 第12週 FIRフィルタの設計:窓関数法
- 第13週 IIRフィルタの設計1:間接設計法
- 第14週 IIRフィルタの設計2:直接設計法
- 第15週 2次元信号と2次元ディジタルフィルタの解析と設計

[この授業で習得する「知識・能力」]

- 1. ディジタル信号処理の利点と問題点を述べることができる.
- 2. 離散時間信号に対して離散時間フーリエ変換を求め、その振幅スペクトルを図示することができる.
- 3. N点信号 x(n)のDFTを求め、振幅スペクトルを図示することができる.
- 4. FFTの原理, 利点を説明することができる.
- 5. ディジタルフィルタの単位ステップ応答,単位インパルス応答を求めることができる.
- 6. 信号の z 変換,ディジタルフィルタ出力の z 変換ができる. 与えられた X(z) に対して逆 z 変換 x(n) を求めることができる.

- 7. ディジタルフィルタの伝達関数と周波数応答を求めることができる. また, 振幅特性と位相特性を図示することができる.
- 8. 所望の応答や特性をもつディジタルフィルタを設計するための仕様を作ることができる.
- 9. 窓関数法によりFIRフィルタの設計ができる.
- 11. 直接設計法によりIIRフィルタを設計できる.
- 12. 2次元ディジタルフィルタの伝達関数と周波数応答を求めることができる.

[この授業の達成目標]

ディジタル信号処理に関する基礎理論を理解し、フィルタ設計に必要な専門知識を習得し、FIRフィルタおよびIIRフィルタの設計に応用できる.

[達成目標の評価方法と基準]

上記の「知識・能力」 $1\sim12$ の習得の度合いを中間試験,期末試験およびレポートにより評価する。 $1\sim12$ に関する重みは同じである。試験問題とレポート課題のレベルは,100 点法により 60 点以上の得点を取得した場合に目標を達成したことが確認できるように設定する。

「注音事項」

規定の単位制に基づき、自己学習を前提として授業を進め、自己学習の成果を評価するためにレポート提出を求めるので、日頃から自己学習に励むこと.

[あらかじめ要求される基礎知識の範囲]

フーリエ変換, ラプラス変換の基礎知識を有しており, 複素解析学(逆 z 変換)を勉強しておくのが望ましい.

[自己学習]

授業で保証する学習時間と、予習・復習(中間試験、定期試験のための学習も含む)およびレポート作成に必要な標準的な学習時間の総計が、90 時間に相当する学習内容である.

教科書:「MATLAB 対応 ディジタル信号処理」 樋口龍雄 川又政征 共著(昭晃堂) 参考書:「シミュレーションで学ぶディジタル信号処理」 尾知博 著(CQ 出版社)

[学業成績の評価方法および評価基準]

適宜求めるレポートの提出をしていなければならない. 期末試験を 60%, レポートの成績を 40% として成績を評価する. 「単位修得要件〕

与えられた課題レポートを全て提出し、学業成績で60点以上を取得すること.

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
ヒューマンインターフェース	平成27年度	箕浦 弘人	専 2	後期	学修単位 2	選

「ものの使いやすさ」を意識した人間と機器とのインターフェースの設計の指針を,身近なものや先端技術を例に挙げ学ぶ.

[授業の内容]

全ての週の内容は,学習・教育目標(B)<専門>,JABEE 基準 1(1)(d)(2)a)に対応する.

- 第1週 人間の感覚と知覚
- 第2週 人間の生理特性・認知と理解
- 第3週 デザイン目標とユーザ特性
- 第4週 対話型システムの設計
- 第5週 インターフェースの評価
- 第6週 人間と人間のインターフェース

第7週 インターフェースの評価の実践(身の回りの物について 使いやすさについて考察し,改善点について検討する. (受講者がプレゼンテーションし,互いに評価する)(学 習・教育目標(C) <発表 > , JABEE 基準 1(1)(f))

第8週 中間試験

第9週 キーボード・マウスの種類と入力方法

第10週 プリンタの種類と印刷方法

第11週 ディスプレイの種類と表示方法

第12週 ビジュアルインターフェース

第13週 マルチユーザインターフェース

第14週 先端技術とインターフェース 第15週 インターフェース開発の今後

[この授業で習得する「知識・能力」]

- 2.デザインの目標とユーザ特性について説明できる.
- 3.インターフェースの設計と評価について説明できる.
- 4.人間と人間の意思疎通を良好に行う為に必要な点を理解して
- 1.人間の知覚と感覚,生理特性,認知と理解について説明できる. 5.コンピュータの入出力機器(キーボード・マウス・プリンタ・ ディスプレイ)の原理が説明できる.
 - 6.先端技術を用いたインターフェースの概要を理解し,その問題 点を検討することができる.

[この授業の達成目標]

人間の身体的・生理的・心理的特性を基礎として,種々のヒュ −マンインターフェースを評価することができ,現在用いられて いる機器の基本原理を説明でき,関連する先端技術について理解 している.

「達成目標の評価方法と基準]

上記の「知識・能力」1~6の習得の度合を中間試験,期末試 験,レポートにより評価する.評価における「知識・能力」の重 みの概ね均等である.試験問題とレポート課題のレベルは,10 0点法により60点以上の得点を取得した場合に目標を達成した ことが確認できるように設定する.

[注意事項] 高機能な機器を開発する上で,いかに利用し易くそれを作るかということは非常に重要な問題となる.この講義でその ような問題の解決のためのいくつかの手法を学んでほしい.具体的な例を多く挙げて説明するので,興味を持って聞いてほしい なお、単位制を前提としてレポート提出を課す授業進行を行うので、日頃の勉強に力を注ぐこと、

[あらかじめ要求される基礎知識の範囲] 情報基礎があれば十分である.新しい教科であり,特に要求される基礎知識なしに受講で きる.

[自己学習]授業で保証する学習時間と,予習・復習(中間試験,定期試験のための学習も含む)及びレポート作成に必要な標準的な 学習時間の総計が,90時間に相当する学習内容である.

教科書:「ヒューマンコンピュータインターラクション」 岡田謙一 他 (オーム社)

参考書:「認知インターフェース」 加藤隆 (オーム社)

[学業成績の評価方法および評価基準] 定期試験,中間試験の2回の試験の平均点を80%,課題(プレゼンテーション・レポート) の平均点を20%で評価する.再試験は実施しない.

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
メカトロニクス工学特論	平成27年度	打田 正樹	専 2	後期	学修単位 2	選

[授業のねらい]メカトロニクスの基本をなす。アクチュエータ,コンピュータ,センサとそれらを組み合わせたフィードバック制御系のより深い理解と修得を目的とする。

[授業の内容] 第 1 週~16 週までの内容はすべて,学習・教育目標 B <専門>と JABEE 認定基準 1(1)の(d)(2)a)に相当する項目である.

第1週 メカトロニクスの基礎

第2週 モータの基礎と種類・特徴。評価方法

第3週 モータ駆動回路とセンサの基礎

第4週 センサの信号手法

第5週 フィードバック制御の基礎

第6週 制御系の安定判別

第7週 MATLABによる PID 制御シミュレーション

第8週 中間試験

第9週 制御器のマイコンへの実装手法

第 10 週 マイコンによるフィードバック制御

第11週 現代制御と状態方程式

第12週 状態フィードバック制御とオブザーバ

第13週 可制御性と可観測性

第14週 MATLABによる制御系設計

第 15 週 MATLAB による制御シミュレーション

[この授業で習得する[知識・能力]]

1.モータの種類や特徴,評価方法等を理解できる。

2. センサの概要とその信号処理手法を理解できる。

3.フィードバック制御と制御系の安定判別法が理解できる。

4.PID制御が理解できる。

5.制御系のマイコンへの実装手法が理解できる。

6.状態方程式の概念が理解でき,与えられたシステムのモデル化ができる.

7. 可制御・可観測性、状態フィードバック制御が理解できる。

8. 極配置法によって制御系の設計ができる.

1 1 . MATLAB - Simulink の機能を理解し,それを用いて基本的な制御系設計ができる.

[この授業の達成目標]

PID 制御などの古典制御理論の基本,及び現代制御理論の柱である状態フィードバック法,可制御性・可観測性理論等が理解でき,また MATLAB を用いた実践的な制御系設計を行うことができる.

[達成目標の評価方法と基準]

上記の「知識・能力」1~4,6~8の習得の度合を中間試験と期末試験により評価する.また。「知識・能力」5,11については制御系設計に関する課題を出し,そのレポートの内容により評価する.それぞれの「知識・能力」の重みの目安は,1~4,6~8で合計70%,5,10で30%とする.試験問題とレポート課題のレベルは,百点法により60点以上の得点を取得した場合に目標を達成したことが確認できるように設定する.

[注意事項]自己学習を前提とした規定の単位制に基づいて授業を進め,また本工学分野における問題解決能力を養うために課題提出を求めるので,授業外における勉強にも力を入れること.

[あらかじめ要求される基礎知識の範囲] 力学,基礎制御理論,電気電子回路,プログラミングの基礎知識が必要である.

[自己学習]授業で保証する学習時間と,予習・復習(中間試験,定期試験のための学習も含む)及びレポート作成に必要な標準的な学習時間の総計が,90時間に相当する学習内容である.

教科書:なし

参考書:「MATLABによる制御設計」 野波健蔵編 (東京電機大学出版局)

[学業成績の評価方法および評価基準]後期中間,学年末の2回の試験の成績(平均点)を70%,課題の成績を30%として評価する.再試験は行わない.

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
電子材料特論	平成27年度	伊藤 明・西村 一寛	専 2	前期	学修単位 2	選

[授業のねらい]材料技術の進歩には目を見張るものがあり、「材料を制するものは産業を制する」といわれるほどに、材料の重要性 が認知されるようになった.科学技術のあらゆる分野での基盤をなすものとしての材料を新しい観点で見直し,材料および素材への技 術者としての認識を深めることを目的とする.授業では主としてセンサ用材料を取り上げ,その特性を中心として学習する

[授業の内容] すべての内容は,学習・教育目標(B)<専門> および JABEE 基準 1(1)(d)(1)に対応する.

第1週 磁性体の種類,磁気モーメント

第2週 磁化曲線と磁化過程,(BH)max

第3週 磁気モーメントの合成と反磁界, 磁気異方性

第4週 磁化の温度変化,硬質磁性材料,軟質磁性材料,半硬質 ■第12週 半導体発光素子 磁性材料、その他の磁性材料

第5週 誘電体,誘電現象,複素誘電率と誘電率の周波数特性

第6週 圧電体, 焦電体, 圧電体・焦電体の応用例, 磁性材料・ 誘電材料の新しい応用展開

第7週 超電導材料

第8週 中間試験

第 9週 中間試験の確認,シリコンの結晶成長

第10週 化合物半導体の結晶成長

第11週 半導体発光素子

第13週 受光素子

第14週 発光素子

第15週 機能性炭素材料

[この授業で習得する「知識・能力」]

1. 磁気材料に関する基礎的事項を理解している.

2 . 各種磁性材料の特徴などについて理解している .

3. 誘電材料に関する基礎的事項を理解している.

4 . 各種誘電材料の特徴などについて理解している.

5. 超電導材料に関する基礎的事項を理解している.

6. シリコン, 化合物半導体の基礎的事項を理解している.

7. 光ファイバーに関する基礎的事項を理解している.

8. 発光素子の原理に関しての基礎的事項を理解している.

9. 受光素子の原理に関しての基礎的事項を理解している.

10.機能性炭素材料の基礎的事項を理解している.

[この授業の達成目標]

磁性材料,誘電体材料,超電導材料,半導体,光・電子材料の 基礎知識を理解し、新素材として、それらのセンサ用材料として の特性を理解している.

[達成目標の評価方法と基準]

上記の「知識・能力」1~10の習得の度合を中間試験,期末試 験,レポートにより評価する.評価における「知識・能力」の重 みは1・2を各15%,3・4を各7%,5を6%,6~10を各 10%とする.試験問題,小テストとレポート課題のレベルは, 百点法により60点以上の得点を取得した場合に目標を達成した ことが確認できるように設定する.

[注意事項] 規定の単位制に基づき,自己学習を前提として授業を進め,自己学習の成果を評価するためにレポート提出を求めるの で,日頃から自己学習に励むこと.

[あらかじめ要求される基礎知識の範囲]物理および化学の一般的な基礎知識.

[自己学習] 授業では取り上げることができない分野での素材等については各自参考文献などにより学習してもらいたい.また,課 題提出を求めたり小テストを行うなどして自己学習の成果に対する評価を実施することもある.授業で保証する学習時間と,予習・復 習(中間試験,定期試験のための学習も含む)及びレポート作成に必要な標準的な学習時間の総計が,90時間に相当する学習内容で

教科書:「電気・電子材料」,中澤達夫 他著(コロナ社)

参考書:非常に範囲が広く,各工学分野における材料を対象として参考書が数多く出版されている.

[学業成績の評価方法および評価基準]

中間試験,定期試験の2回の試験の平均点で評価する.再試験を実施した場合には,60点を上限として評価する.小テストやレポ ートを実施した場合には,試験の結果を 70%,小テストの結果を 10%,課題(レポート)を 20%で評価する.

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
電子線機器工学	平成27年度	花井 孝明	専 2	前期	学修単位 2	選

真空中を一定の速度で運動する多数の電子を電子線または電子ビームと呼ぶ.電子線を利用する機器は,クライストロン,進行波管などの高周波通信機器,陰極線管(CRT),撮像管などの画像機器,電子顕微鏡などの計測機器と幅広い.この授業では,電子線機器を知るための基礎となる電磁界中での電子の運動方程式を学び,種々の条件の下で電子の運動を定量的に論ずる手法を学ぶ.さらに,各種電子線機器に用いられる電子レンズの作用についてその概略を学ぶ.

[授業の内容]

すべての内容は学習・教育目標(B) < 専門 > と JABEE 基準 1(1)(d)(2)a)に対応する.

第1週 電子の粒子性と波動性

第2週 電子線機器の種類と用途,電子線機器の構成要素

第3週 一様電界中での電子の運動とその応用

第4週 一様磁界中での電子の運動とその応用

第5週 一般電磁界と直交電磁界における運動方程式

第6週 直交電磁界中での電子の運動

第7週 直交電磁界を用いた電子エネルギー分析

第8週 中間試験

第9週 円筒座標系における運動方程式の導出

第10週 運動方程式と軌道方程式, Bush の定理

第11週 軸対称な電磁界中での電子の運動,電子レンズ

第12週 近軸軌道方程式の導出

第13週 近軸電子線と電磁界のレンズ作用

第14週 電子レンズを用いた回折パターンの観察

第15週 レンズ公式と近軸不変量

[この授業で習得する「知識・能力」]

- 1. 一様電界中の電子の運動を定量的に論ずることができる.
- 2. 一様磁界中の電子の運動を定量的に論ずることができる.
- 3.直交電磁界中の電子の運動方程式を理解し,運動方程式を解いて電子軌道を求めることができる.
- 4. Bush の定理を理解し、電子の角速度を求めることができる.
- 5.近軸軌道方程式の導出過程を理解し,近軸軌道の性質を説明することができる.
- 6.電子レンズの作用を理解し、基本的なレンズ公式を導くことができる。

[この授業の達成目標]

電磁界中での電子の運動方程式を基礎として,種々の条件の下で電子の運動を定量的に論ずることができ,電子線機器への応用として電子レンズの作用を求めることができる.

[達成目標の評価方法と基準]

上記の「知識・能力」1~6の習得の度合を中間試験,期末試験,レポートにより評価する.評価における「知識・能力」の重みの目安は1,2,4,6を各15%程度,3,5を各20%程度とする.試験問題とレポート課題のレベルは,100点法により60点以上の得点を取得した場合に目標を達成したことが確認できるように設定する.

[注意事項] 規定の単位制に基づき,自己学習を前提として授業を進め,自己学習の成果を評価するためにレポート提出を求めるので,日頃から自己学習に励むこと.

[あらかじめ要求される基礎知識の範囲] 本教科は質点の力学や電気磁気学の学習が基礎となる教科である.

[自己学習] 授業で保証する学習時間と,予習・復習(中間試験,定期試験のための学習も含む)及びレポート作成に必要な標準的な学習時間の総計が,90時間に相当する学習内容である.

教科書:なし,ノート講義

参考書:「電子・イオンビーム光学」 裏克己(共立出版),「電子管工学」 桜庭一郎(森北出版)

「学業成績の評価方法および評価基準 1

中間,期末の2回の試験の平均点を80%,レポートの評価を20%として評価する.ただし,中間試験で60点に達していない者には再試験を課し,再試験の成績が中間試験の成績を上回った場合には,60点を上限として中間試験の成績を再試験の成績で置き換えるものとする.

[単位修得要件]

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
インターンシップ	平成27年度	専攻主任・副主任	専1・2	通年	学修単位 2	選

[授業のねらい] 技術者が経験する実務上の問題点と課題を体験する.

[授業の内容]

内容は,学習・教育目標(B)<展開>と JABEE 基準 1(d)(2)d) に対応する.

次のインターンシップ機関(以下,実習機関),内容および期間 で実務上の問題点と課題を体験し、日報、報告書、発表資料を作 成し,発表を行う。

【実習機関】学生の指導が担当可能な企業または公共団体の機関 で専攻科分科会の推薦により校長が選定して委属し た機関.ただし,専攻科2年次の就職内定者について は,内定先企業等への実習とする.

【内容】専攻科生が従事できる実務のうち、インターンシップの 目的にふさわしい業務

【期間】2週間以上の期間実施した場合において,実働10日以上

【日報】毎日,日報を作成すること.

【課題】インターンシップ終了後に,報告書を作成し提出するこ

【発表】夏季休暇後にインターンシップ発表会を開催するので、 発表資料を作成し,発表準備を行うこと

[この授業で習得する「知識・能力」]

- 1. 技術者が経験する実務上の問題点を体験することができる...
- 2. 体験したことを日報にまとめることができる.
- 3. 体験したことを報告書にまとめることができる.
- 4. 体験したことを発表資料にすることができる.
- 5. 体験したことを発表し、質疑応答することができる.

「この授業の達成目標)

技術者が経験する実務上の問題点と課題を体験し,体験したこ それを伝えられる。

[達成目標の評価方法と基準]

上記の「知識能力」1~5の習得具合を勤務状況,勤務態度,日 とを日報や報告書にまとめ、それらをもとに、発表資料を作成し、 ▼報、報告書および発表の項目を総合して評価する、評価に対する 「知識・能力」の各項目の重みは同じである.

[注意事項] インターンシップの内容は,専攻科学生が従事できる実務のうち,インターンシップの目的にふさわしい業務であるこ と、専攻科2年次の就職内定者については、内定先企業等への実習であること、実習機関の規則を厳守すること、評定書を最終日に受 け取ったら,2年学生は専攻主任または1年学生は専攻副主任に提出すること.インターンシップの手引き,筆記用具,メモ帳(手帳) 日報,実習先から指定されている物,評定書を持参すること.

[あらかじめ要求される基礎知識の範囲] 心得(時間の厳守(10分前集合),挨拶,お礼など)

[レポート等]日報は,毎日,作成し,報告書も作成し,実習指導責任者の検印を受けて,インターンシップ終了後に,2年学生は専 攻主任に,1年学生は専攻副主任に提出すること.発表会用に発表資料および発表の準備をすること.

教科書:特になし. 参考書:インターンシップの手引き

[学業成績の評価方法および評価基準] 「インターンシップの成績評価基準」に定められた配点に従って,勤務状況,勤務態度,日 報,報告書および発表により成績を評価する.

[単位修得要件] 総合評価で「可」以上を取得すること.

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
インターンシップ	平成27年度	専攻主任・副主任	専1・2	通年	学修単位 4	選

[授業のねらい] 技術者が経験する実務上の問題点と課題を体験する.

[授業の内容]

内容は,学習・教育目標(B)<展開>と JABEE 基準 1(d)(2)d) に対応する.

次のインターンシップ機関(以下,実習機関),内容および期間 で実務上の問題点と課題を体験し、日報、報告書、発表資料を作 成し,発表を行う。

【実習機関】学生の指導が担当可能な企業または公共団体の機関 で専攻科分科会の推薦により校長が選定して委属し た機関.ただし,専攻科2年次の就職内定者について は,内定先企業等への実習とする.

【内容】専攻科生が従事できる実務のうち、インターンシップの 目的にふさわしい業務

【期間】2週間以上の期間実施した場合において,実働20日以上

【日報】毎日,日報を作成すること.

【課題】インターンシップ終了後に,報告書を作成し提出するこ

【発表】夏季休暇後にインターンシップ発表会を開催するので、 発表資料を作成し,発表準備を行うこと

[この授業で習得する「知識・能力」]

- 1. 技術者が経験する実務上の問題点を体験することができる...
- 2. 体験したことを日報にまとめることができる.
- 3. 体験したことを報告書にまとめることができる.
- 4. 体験したことを発表資料にすることができる.
- 5. 体験したことを発表し、質疑応答することができる.

「この授業の達成目標)

技術者が経験する実務上の問題点と課題を体験し,体験したこ それを伝えられる。

[達成目標の評価方法と基準]

上記の「知識能力」1~5の習得具合を勤務状況,勤務態度,日 「知識・能力」の各項目の重みは同じである.

[注意事項] インターンシップの内容は,専攻科学生が従事できる実務のうち,インターンシップの目的にふさわしい業務であるこ と、専攻科2年次の就職内定者については、内定先企業等への実習であること、実習機関の規則を厳守すること、評定書を最終日に受 け取ったら,2年学生は専攻主任または1年学生は専攻副主任に提出すること.インターンシップの手引き,筆記用具,メモ帳(手帳) 日報,実習先から指定されている物,評定書を持参すること.

[あらかじめ要求される基礎知識の範囲] 心得(時間の厳守(10分前集合),挨拶,お礼など)

[レポート等]日報は,毎日,作成し,報告書も作成し,実習指導責任者の検印を受けて,インターンシップ終了後に,2年学生は専 攻主任に,1年学生は専攻副主任に提出すること.発表会用に発表資料および発表の準備をすること.

教科書:特になし. 参考書:インターンシップの手引き

[学業成績の評価方法および評価基準] 「インターンシップの成績評価基準」に定められた配点に従って,勤務状況,勤務態度,日 報,報告書および発表により成績を評価する.

[単位修得要件] 総合評価で「可」以上を取得すること.

授業科目名	開講年度	担当教員名	学年	開講期	単位数	必・選
インターンシップ	平成27年度	専攻主任・副主任	専1・2	通年	学修単位 6	選

[授業のねらい] 技術者が経験する実務上の問題点と課題を体験する.

[授業の内容]

内容は,学習・教育目標(B)<展開>と JABEE 基準 1(d)(2)d) に対応する.

次のインターンシップ機関(以下,実習機関),内容および期間 で実務上の問題点と課題を体験し、日報、報告書、発表資料を作 成し,発表を行う。

【実習機関】学生の指導が担当可能な企業または公共団体の機関 で専攻科分科会の推薦により校長が選定して委属し た機関.ただし,専攻科2年次の就職内定者について は,内定先企業等への実習とする.

【内容】専攻科生が従事できる実務のうち、インターンシップの 目的にふさわしい業務

【期間】2週間以上の期間実施した場合において,実働30日以上 【日報】毎日,日報を作成すること.

【課題】インターンシップ終了後に,報告書を作成し提出するこ ے .

【発表】夏季休暇後にインターンシップ発表会を開催するので、 発表資料を作成し,発表準備を行うこと

[この授業で習得する「知識・能力」]

- 1. 技術者が経験する実務上の問題点を体験することができる...
- 2. 体験したことを日報にまとめることができる.
- 3. 体験したことを報告書にまとめることができる.
- 4. 体験したことを発表資料にすることができる.
- 5. 体験したことを発表し、質疑応答することができる.

「この授業の達成目標)

技術者が経験する実務上の問題点と課題を体験し,体験したこ それを伝えられる。

[達成目標の評価方法と基準]

上記の「知識能力」1~5の習得具合を勤務状況,勤務態度,日 「知識・能力」の各項目の重みは同じである.

[注意事項] インターンシップの内容は,専攻科学生が従事できる実務のうち,インターンシップの目的にふさわしい業務であるこ と、専攻科2年次の就職内定者については、内定先企業等への実習であること、実習機関の規則を厳守すること、評定書を最終日に受 け取ったら,2年学生は専攻主任または1年学生は専攻副主任に提出すること.インターンシップの手引き,筆記用具,メモ帳(手帳) 日報,実習先から指定されている物,評定書を持参すること.

[あらかじめ要求される基礎知識の範囲] 心得(時間の厳守(10分前集合),挨拶,お礼など)

[レポート等]日報は,毎日,作成し,報告書も作成し,実習指導責任者の検印を受けて,インターンシップ終了後に,2年学生は専 攻主任に,1年学生は専攻副主任に提出すること.発表会用に発表資料および発表の準備をすること.

教科書:特になし. 参考書:インターンシップの手引き

[学業成績の評価方法および評価基準] 「インターンシップの成績評価基準」に定められた配点に従って,勤務状況,勤務態度,日 報,報告書および発表により成績を評価する.

[単位修得要件] 総合評価で「可」以上を取得すること.